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Abstract Given a collection of connected graphs one may build bridge and chain
graphs out of them. In this paper it is shown how the Wiener, hyper-Wiener, detour and
hyper-detour indices for bridge and chain graphs are determined from the respective
indices of the individual graphs. The results obtained are illustrated by some examples.
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1 Introduction

Like in many other branches of mathematics one tries to find in graph theory certain
invariants of graphs which only depend on the graph G itself (or—in other cases—
in addition on an embedding into the plane or some other manifold), see, e.g., [6]
and the references given therein. One of the simplest such invariants is the adjacency
matrix A(G) with columns and rows indexed by the vertices of the graph, such that the
uv-entry of the matrix is equal to the number of arcs between the vertices u and v. The
spectrum of the adjacency matrix is called the spectrum of the graph and the depen-
dance of the spectrum from the graph has been considered in great detail, see, e.g., [4]
and the references given therein. If σ(G) ≡ σ(A(G)) = {λ1(G), . . . , λn(G)} is the
spectrum of G then any function of the eigenvalues may be used as graph invariant.
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Of course, it is possible to define many other graph invariants which are not based on
the spectrum of the adjacency matrix but directly on the vertices and edges of the graph
and the distances between them. For example, in acyclic graphs the Wiener index is
defined as W (G) = ∑

e ∈ E(G) Ni,e N j,e, where E(G) denotes the set of edges of G
and Nk,e denotes the number of vertices lying on the side of the edge e having the
endpoint k [5,8,26]. Arguably, the Wiener index is the most famous such index but
many other related indices have been considered, see, e.g., [5]. The motivation for the
study of these objects is twofold: on the one hand one has the purely mathematical
desire to understand the intrinsic properties of graphs and the connections between
them better while on the other hand these indices are applied in theoretical chemistry
as so called topological indices, capturing some of the properties of a molecule in
a single number. More precisely, a single number, representing a chemical structure
in graph-theoretical terms via the molecular graph, is called a topological descriptor
and if it in addition correlates with a molecular property it is called topological index.
By now there do exist a lot of different types of such indices which capture different
aspects of the molecular graphs associated to the molecules considered, see, e.g., [5].
As already mentioned above the most famous such index is arguably the Wiener index
[8,26]. The Szeged index [7,13] is closely related to the Wiener index and is a vertex-
multiplicative type index that takes into account how the vertices of a given molecular
graph are distributed. The Padmakar-Ivan (PI) index [12,14] is an additive index that
takes into account the distribution of edges and, therefore, complements the Szeged
index in a certain sense. For bridge and chain graphs (to be defined more precisely
later) the PI index was determined in [19] and for bridge graphs the Szeged index
(and the vertex PI index) was considered in [20]. Quite recently, the Wiener index
was considered in [2] for a class of graphs containing as special cases the bridge and
chain graphs. In the present paper we will derive the Wiener, hyper-Wiener, detour
and hyper-detour indices of bridge and chain graphs in an explicit fashion. To make
this more concrete we now define these indices.

In an undirected connected graph G with vertices set V (G) and edges set E(G), a
given pair of vertices (a, b), a, b ∈ V (G), is joined by a path p(a, b), that is, a con-
tinuous sequence of edges, with the property that all distinct and any two subsequent
edges are adjacent, see [10,23]. The length of the path p(a, b) is equal to the length
of edges in the path between vertices a and b. The shortest path joining vertices a
and b is called geodesic and its length is the topological distance, Dab. The longest
path is the elongation and its length is equal to the detour distance, �ab. The square
arrays which collect the lengths of the two path types are called the distance matrix
(see [3,10,23]), denoted as D, and the detour matrix (see [1,3,11,24]), denoted as �,
respectively:

Dab =
{

Dab, a �= b
0, a = b,

�ab =
{

�ab, a �= b
0, a = b.

(1.1)

In the following we will adopt this convention and do not indicate the dependency on
the graph explicitly (i.e., we will write �ab instead of �ab(G)).

Several graph descriptors (topological indices) can be calculated as half-sum of
entries in the above matrices: The half-sum of all the entries of the matrices D and �
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are called the Wiener index (see [26]) and the Detour index (see [1,11,17,18,22,24,25])
of the graph G and they are denoted by W = W (G) and ω = ω(G), that is,

W = 1

2

∑

a,b

Dab, ω = 1

2

∑

a,b

�ab, (1.2)

respectively. The hyper-Wiener index (see [9,16,21]) and the hyper-detour index (see
[15,17]) are given by

W W = 1

2

∑

a,b

(
Dab + 1

2

)

, ωω = 1

2

∑

a,b

(
�ab + 1

2

)

. (1.3)

In the present paper we will consider bridge and chain graphs and determine the
Wiener, hyper-Wiener, detour, and hyper-detour indices for them. The important spe-
cial case where the bridge and chain graphs are built from several copies of the same
graph is singled out and the asymptotics of the above indices for large graphs are given
in this case. Furthermore, some particular examples are treated explicitly.

The paper is organized as follows. In Sect. 2 bridge and chain graphs are defined
and some important quantities are introduced which will be used repeatedly in the sec-
tions following. In Sect. 3 the Wiener and detour indices of bridge graphs are treated,
whereas the hyper-Wiener and hyper-detour indices of bridge graphs are treated in
Sect. 4. Similarly, in Sect. 5 the Wiener and detour indices of chain graphs are treated,
whereas the hyper-Wiener and hyper-deotur indices of chain graphs are treated in
Sect. 6. Finally, in Sect. 7 some conclusions are presented.

2 Preliminaries: bridge and chain graphs

In this section we introduce bridge and chain graphs and establish some notations and
abbreviations which will be used in the rest of the article. We also collect here some
simple observations which will be used repeatedly in later sections.

2.1 Bridge graphs

Let {Gi }d
i=1 be a set of finite pairwise disjoint graphs with vi ∈ V (Gi ). The bridge

graph

B(G1, G2, . . . , Gd) ≡ B(G1, G2, . . . , Gd ; v1, v2, . . . , vd)

of {Gi }d
i=1 with respect to the vertices {vi }d

i=1 is the graph obtained from the graphs
G1, . . . , Gd by connecting the vertices vi and vi+1 by an edge for all i = 1, 2, . . . ,

d − 1, see Fig. 1.
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Fig. 1 The bridge graph

In the following we will define several quantities which will be used repeatedly
later on. As a first quantity we introduce

Pb(G) :=
∑

a ∈ V (G)

Dab, Qb(G) :=
∑

a ∈ V (G)

�ab, (2.1)

which is, roughly speaking, half the contribution of the vertex b to the Wiener index
(resp. detour index) of G. More precisely, using (1.2), we can write

W (G) = 1

2

∑

b ∈ V (G)

Pb(G), ω(G) = 1

2

∑

b ∈ V (G)

Qb(G).

Similarly, we introduce the analogous quantities

P̃b(G) :=
∑

a ∈ V (G)

(
Dab + 1

2

)

, Q̃b(G) :=
∑

a ∈ V (G)

(
�ab + 1

2

)

(2.2)

for the hyper-Wiener and hyper-detour index. Recalling (1.3), we can write

W W (G) = 1

2

∑

b ∈ V (G)

P̃b(G), ωω(G) = 1

2

∑

b ∈ V (G)

Q̃b(G).

Since we will have to consider later the shortest and longest paths between two vertices
in a bridge graph we collect some obvious facts here for easy reference.

Fact 2.1 Let B(G1, . . . , Gd ; v1, . . . , vd) be the bridge graph of {Gi }d
i=1 and let two

vertices a ∈ V (Gi ) and b ∈ V (G j ) with i < j be given. Then the following holds
true.

(1) Each shortest path p(a, b) in G between a and b can be decomposed into three
shortest paths: the shortest path p(a, vi ) in the graph Gi , the path vivi+1 . . . v j ,
and the shortest path p(v j , b) in the graph G j . Thus, we can write

Dab = Davi + ( j − i) + Dbv j .

(2) Each longest path p(a, b) in G between a and b can be decomposed into the
following paths: a longest path p(a, vi ) in the graph Gi , the path vrvr+1 (of
length 1) and the longest path in the graph Gr+1 which starts and ends at vr+1
for all r = i, . . . , j −1, and the longest path p(v j , b) in the graph G j . Denoting
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Fig. 2 The chain graph

the length of the longest path in the graph Gs which starts and ends at vs by cvs ,
we can thus write

�ab = �avi +
j−1∑

s=i+1

(1 + cvs ) + 1 + �bv j .

2.2 Chain graphs

Let {Gi }d
i=1 be a set of finite pairwise disjoint graphs with vi , wi ∈ V (Gi ), the chain

graph

C(G1, G2, . . . , Gd) ≡ C(G1, G2, . . . , Gd ; v1, w1, v2, w2, . . . , vd , wd)

of {Gi }d
i=1 with respect to the vertices {vi , wi }d

i=1 is the graph obtained from the graphs
G1, . . . , Gd by identifying the vertex wi and the vertex vi+1 for all i = 1, 2, . . . , d−1,
see Fig. 2.

Given a chain graph as in Fig. 2, we define in addition to the above quantities

L P (Gi ) := Pvi (Gi )

i−1∑

j=1

(|V (G j )| − 1), RP (Gi ) := Pvi+1(Gi )

d∑

j=i+1

(|V (G j )| − 1)

(2.3)

where L P (Gi ) is defined for i = 2, . . . , d and RP (Gi ) for i = 1, . . . , d − 1. Note
that the letter L is chosen as a memnonic for “left” (and similarly for R). Similarly,

L Q(Gi ) := Qvi (Gi )

i−1∑

j=1

(|V (G j )| − 1), RQ(Gi ) := Qvi+1(Gi )

d∑

j=i+1

(|V (G j )| − 1)

(2.4)

and L Q(Gi ) is defined for i = 2, . . . , d and RQ(Gi ) for i = 1, . . . , d − 1. Roughly
speaking, these quantities represent some kind of weighted contribution of one side of
the considered vertex to the respective index. For example, in L P (Gi ) the contribution
Pvi (Gi ) to the Wiener index is weighted with the sum of the vertices to the left of vi ,
whereas in RQ(Gi ) the contribution Qvi+1(Gi ) to the detour index is weighted with
the sum of the vertices to the right of vi+1 = wi . We also introduce the corresponding
quantities for the hyper-Wiener and hyper-detour index,
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L̃ P (Gi ) := P̃vi (Gi )

i−1∑

j=1

(|V (G j )| − 1), R̃P (Gi ) := P̃vi+1(Gi )

d∑

j=i+1

(|V (G j )| − 1),

(2.5)

as well as

L̃ Q(Gi ) := Q̃vi (Gi )

i−1∑

j=1

(|V (G j )| − 1), R̃Q(Gi ) := Q̃vi+1(Gi )

d∑

j=i+1

(|V (G j )| − 1).

(2.6)

In analogy to Fact 2.1 one has in the case of chain graphs the following fact.

Fact 2.2 Let C(G1, . . . , Gd ; v1, w1, . . . , vd , wd) be the chain graph of {Gi }d
i=1 and

let two vertices a ∈ V (Gi ) and b ∈ V (G j ) with i < j be given. Then the following
holds true.

(1) Each shortest path p(a, b) in G between a and b can be decomposed into three
shortest paths: the shortest path p(a, wi ) in the graph Gi , the shortest path from
vs to ws in the graph Gs for s = i + 1, . . . , j − 1, and the shortest path p(v j , b)

in the graph G j . Thus, we can write

Dab = Dawi +
j−1∑

j=i+1

Dvsws + Dbv j .

(2) Each longest path p(a, b) in G between a and b can be decomposed into the
following paths: the longest path p(a, wi ) in the graph Gi , the longest path from
vs to ws in the graph Gs for s = i + 1, . . . , j − 1, and the longest path p(v j , b)

in the graph G j . Thus, we can write

�ab = �awi +
j−1∑

j=i+1

�vsws + �bv j .

3 Wiener and detour indices of the bridge graph

In this section we give a formula for the Wiener and detour indices of the bridge graph
B(G1, G2, . . . , Gd) in terms of the graphs Gi .

3.1 Wiener index of the bridge graph

At first we consider the Wiener index for the bridge graph.

Theorem 3.1 The Wiener index of the bridge graph G = B(G1, . . . , Gd ; v1, . . . , vd)

is given by
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W (G) =
d∑

i=1

W (Gi )

+
∑

1≤i< j≤d

|V (Gi )||V (G j )|( j − i) +
d∑

i=1

(|V (G)| − |V (Gi )|)Pvi (Gi ).

Proof From the definitions we have that

2W (G) =
∑

a,b ∈ V (G)

Dab

=
d∑

i=1

d∑

j=1

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

Dab

=
d∑

i=1

∑

a,b ∈ V (Gi )

Dab +
d∑

i=1

d∑

j=1, j �=i

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

Dab

= 2
d∑

i=1

W (Gi ) + 2
∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

Dab.

Recalling Fact 2.1 about the decomposition of the shortest path in a bridge graph,
we can thus write

2W (G) = 2
d∑

i=1

W (Gi ) + 2
∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

{
Davi + |i − j | + Dv j b

}

= 2
d∑

i=1

W (Gi ) + 2
∑

1≤i< j≤d

|V (Gi )||V (G j )||i − j |

+
d∑

i=1

(|V (G)| − |V (Gi )|)
∑

a ∈ V (Gi )

Davi

+
d∑

j=1

(|V (G)| − |V (G j )|)
∑

b ∈ V (G j )

Dbv j

= 2
d∑

i=1

W (Gi ) + 2
∑

1≤i< j≤d

|V (Gi )||V (G j )|( j − i)

+ 2
d∑

i=1

(|V (G)| − |V (Gi )|)
∑

a ∈ V (Gi )

Davi .
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Hence, by the definition of Pv(G) we obtain that

W (G) =
d∑

i=1

W (Gi ) +
∑

1≤i< j≤d

|V (Gi )||V (G j )|( j − i)

+
d∑

i=1

(|V (G)| − |V (Gi )|)Pvi (Gi ),

as claimed. ��
The above theorem gives for Gi = H and vi = v for all i = 1, 2, . . . , d the

following result.

Corollary 3.2 The Wiener index of the bridge graph G = B(H, . . . , H ; v, . . . , v)

(d times) is given by

W (G) = dW (H) + |V (H)|2
(

d + 1

3

)

+ (d − 1)d|V (H)|Pv(H).

For large d one has asymptotically

W (G) ∼ |V (H)|2
6

d3.

3.2 Detour index of the bridge graph

Now we consider the detour index of the bridge graph.

Theorem 3.3 The detour index of the bridge graph G = B(G1, . . . , Gd ; v1, . . . , vd)

is given by

ω(G) =
d∑

i=1

ω(Gi ) +
∑

1≤i< j≤d

|V (Gi )||V (G j )|
(

j − i + cvi+1 + · · · + cv j−1

)

+
d∑

i=1

(|V (G)| − |V (Gi )|)Qvi (Gi ),

where cvi = cvi (Gi ) is the length of the longest path in the graph Gi which starts and
ends at vi .

Proof Using the same arguments as in the proof of Theorem 3.1, we can write

2ω(G) = 2
d∑

i=1

ω(Gi ) + 2
∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

�ab.
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Recalling Fact 2.1 about the decomposition of the longest path in a bridge graph,
we can thus write

2ω(G) = 2
d∑

i=1

ω(Gi ) + 2
∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

⎛

⎝�avi + ( j − i)

+
j−1∑

s=i+1

cvs + �v j b

⎞

⎠

= 2
d∑

i=1

ω(Gi ) + 2
∑

1≤i< j≤d

|V (Gi )||V (G j )|
(

j − i + cvi+1 + · · · + cv j−1

)

+ 2
∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

(
�avi + �v j b

)

= 2
d∑

i=1

ω(Gi ) + 2
∑

1≤i< j≤d

|V (Gi )||V (G j )|
(

j − i + cvi+1 + · · · + cv j−1

)

+ 2
d∑

i=1

(|V (G)| − |V (Gi )|)
∑

a ∈ V (Gi )

�avi .

Hence, by the definition of Qv(G) we obtain that

ω(G) =
d∑

i=1

ω(Gi ) +
∑

1≤i< j≤d

|V (Gi )||V (G j )|
(

j − i + cvi+1 + · · · + cv j−1

)

+
d∑

i=1

(|V (G)| − |V (Gi )|)Qvi (Gi ),

as claimed. ��
The above theorem gives for Gi = H and vi = v for all i = 1, 2, . . . , d the following
result.

Corollary 3.4 The detour index of the bridge graph G = B(H, . . . , H ; v, . . . , v)

(d times) is given by

ω(G) = dω(H) + |V (H)|2
(

d + 1

3

)

+ |V (H)|2
(

d

3

)

cv(H) + 2|V (H)|
(

d

2

)

Qv(H),

where cv(H) is the length of the longest path in the graph H which starts and ends at
v. For large d one has asymptotically

W (G) ∼ |V (H)|2(1 + cv(H))

6
d3.
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Fig. 3 The graph Bd;3

Fig. 4 The bridge graph of the
hexagon graph C6

3.3 Examples

In this section we consider some simple examples and determine their Wiener and
detour indices.

Example 3.5 Let Bd;3 = G(P3, . . . , P3; v, . . . , v) (d times), where P3 is the path
with three vertices such that the middle vertex is v, see Fig. 3 (Polyethene when
d = 4). Using

W (Pn) =
(

n + 1

3

)

, (3.1)

Corollary 3.2 yields for Bd;3 that

W (Bd;3) = 4d + 9

(
d + 1

3

)

+ 6(d − 1)d = d(3d2 + 12d − 7)

2
.

Example 3.6 In a similar fashion one may define more general graphs Bd;n . Since
one has B2;n = P2n one may perform a simple consistency check. Using Corollary 3.2
as well as (3.1), one obtains after some calculations that W (B2;n) = n

3 (4n2 −1) which

coincides with
(2n+1

3

) = W (P2n), as it should.

For the simple example G = Bd;3 Corollary 3.4 shows that ω(Bd;3) = W (Bd;3).
Let us, therefore, consider a more complex example for the detour index.

Example 3.7 Let us consider the bridge graph G = (Cn, . . . , Cn) of the cycle Cn

with n vertices, see Fig. 4 for the case n = 6. We now want to determine the detour
index ω(G). It is clear that |V (Cn)| = n as well as cv(Cn) = n, so it remains to
determine Qv(Cn) and ω(Cn). Let us first turn to Qv(Cn) and consider the case where
n is even. The vertex “opposite” to v contributes n

2 and the contributions from the
vertices of the left and right side are equal. It follows that

∑

a ∈ V (Cn)

�av = n

2
+ 2

n
2 −1∑

k=1

(n − k) = 3n2 − 4n

4
.
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In the case where n is odd one obtains by a similar consideration

∑

a ∈ V (Cn)

�av = 3n2 − 4n + 1

4
.

To write this in a uniform fashion we introduce εn := 0 if n is even and εn := 1 if n
is odd. Then we can write both cases simultaneously as

Qv(Cn) =
∑

a ∈ V (Cn)

�av = 3n2 − 4n + εn

4
.

Due to the high symmetry of the graph Cn we can now easily determine ω(Cn). Since
ω(Cn) = n

2 Qv(Cn) we obtain for the detour index of the cycle Cn that

ω(Cn) = n(3n2 − 4n + εn)

8
,

as was found originally by Lukovits [17] (see also [5]). Thus, collecting the above
results we have found that the detour index of the bridge graph of d cycles Cn is given
by

ω(B(Cn, . . . , Cn)) = n(3n2 − 4n + εn)

8

(

d + 4

(
d

2

))

+ n3
(

d

3

)

+ n2
(

d + 1

3

)

.

4 Hyper-Wiener and hyper-detour indices of the bridge graph

In this section we give a formula for the hyper-Wiener and hyper-detour index of the
bridge graph B(G1, G2, . . . , Gd) in terms of the graphs Gi .

4.1 Hyper-Wiener index of the bridge graph

At first we consider the hyper-Wiener index for the bridge graph.

Theorem 4.1 The hyper-Wiener index of the bridge graph G = B(G1, . . . , Gd ; v1
. . . , vd) is given by

W W (G) =
d∑

i=1

W W (Gi ) +
d∑

i=1

(|V (G)| − |V (Gi )|)P̃vi (Gi )

+
∑

1≤i< j≤d

(

|V (Gi )||V (G j )|
(

j − i + 1

2

)

+ 2( j − i)|V (G j )|Pvi (Gi ) + Pvi (Gi )Pv j (G j )

)

.
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Proof Using similar arguments as in the proof of Theorem 3.1, we can write

2W W (G) = 2
d∑

i=1
W W (Gi ) + 2

∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

(Dab+1
2

)
.

Recalling Fact 2.1 about the decomposition of the shortest path in a bridge graph, we
can thus write

2W W (G) = 2
d∑

i=1
W W (Gi ) + 2

∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

(Davi +( j−i)+Dv j b+1

2

)
.

Using the fact that

(
α + β + γ + 1

2

)

=
(

α + 1

2

)

+
(

β + 1

2

)

+
(

γ + 1

2

)

+ αβ + αγ + βγ, (4.1)

we obtain that

2W W (G) = 2
d∑

i=1

W W (Gi ) + 2
d∑

i=1

(|V (G)| − |V (Gi )|)P̃vi (Gi )

+ 2
∑

1≤i< j≤d

(

|V (Gi )||V (G j )|
(

j − i + 1

2

)

+ 2( j − i)|V (G j )|Pvi (Gi ) + Pvi (Gi )Pv j (G j )

)

,

as claimed. ��
The above theorem gives for Gi = H and vi = v for all i = 1, 2, . . . , d the

following result.

Corollary 4.2 The hyper-Wiener index of the bridge graph G = B(H, . . . , H ; v,

. . . , v) (d times) is given by

W W (G) = dW W (H) + 2

(
d

2

)

|V (H)|P̃v(H)

+
(

d + 2

4

)

|V (H)|2 + 2

(
d + 1

3

)

|V (H)|Pv(H) +
(

d

2

)

P2
v (H).

For large d one has asymptotically

W W (G) ∼ |V (H)|2
24

d4.
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4.2 Hyper-detour index of the bridge graph

Now we consider the hyper-detour index of the bridge graph.

Theorem 4.3 The hyper-detour index of the bridge graph G = B(G1, . . . , Gd ;
v1, . . . , vd) is given by

ωω(G) =
d∑

i=1

ωω(Gi ) +
d∑

i=1

(|V (G)| − |V (Gi )|)Q̃vi (Gi )

+
∑

1≤i< j≤d

|V (Gi )||V (G j )|
(

j − i + ∑ j−1
s=i+1 cvs + 1

2

)

+
∑

1≤i< j≤d

⎡

⎣2

⎛

⎝j−i +
j−1∑

s=i+1

cvs

⎞

⎠|V (G j )|Qvi (Gi ) + Qvi (Gi )Qv j (G j )

⎤

⎦ ,

where cvi is the length of the longest path in the graph Gi which starts and ends at vi .

Proof Using similar arguments as in the proof of Theorem 3.1, we obtain that

2ωω(G) = 2
d∑

i=1

ωω(Gi )

+ 2
∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

(
�ab + 1

2

)

.

Recalling Fact 2.1 about the decomposition of the longest path in a bridge graph, we
can thus write

2ωω(G) = 2
d∑

i=1

ωω(Gi )

+ 2
∑

1≤i< j≤d

∑

a ∈ V (Gi )

∑

b ∈ V (G j )

×
(

�avi + ( j − i) + ∑ j−1
s=i+1 cvs + �v j b + 1

2

)

.
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Using (4.1), we obtain that

2ωω(G) = 2
d∑

i=1

ωω(Gi ) + 2
d∑

i=1

(|V (G)| − |V (Gi )|)Q̃vi (Gi )

+ 2
∑

1≤i< j≤d

|V (Gi )||V (G j )|
(

j − i + ∑ j−1
s=i+1 cvs + 1

2

)

+ 2
∑

1≤i< j≤d

⎡

⎣2

⎛

⎝j−i +
j−1∑

s=i+1

cvs

⎞

⎠|V (G j )|Qvi (Gi )+Qvi (Gi )Qv j (G j )

⎤

⎦,

as claimed. ��

The above theorem gives for Gi = H and vi = v for all i = 1, 2, . . . , d the
following result.

Corollary 4.4 The hyper-detour index of the bridge graph G = B(H, . . . , H ;
v, . . . , v) (d times) is given by

ωω(G) = dωω(H) + 2|V (H)|
(

d

2

)

Q̃v(H)

+|V (H)|2
∑

1≤i< j≤d

(
j − i + 1 + ( j − i − 1)cv(H)

2

)

+Qv(H)
∑

1≤i< j≤d

[2 ( j − i + ( j − i − 1)cv(H)) |V (H)| + Qv(H)] ,

where cv(H) is the length of the longest path in the graph H which starts and ends at
v. For large d one has asymptotically

ωω(G) ∼ |V (H)|2(1 + cv(H))2

24
d4.

4.3 Examples

In this section we consider some simple examples.

Example 4.5 Using

W W (Pn) =
(

n + 2

4

)

, (4.2)
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Corollary 4.2 yields for Bd;3 that

W W (Bd;3) = 5d + 12

(
d

2

)

+ 9

(
d + 2

4

)

+ 12

(
d + 1

3

)

+ 4

(
d

2

)

= d(3d3 + 22d2 + 61d − 46)

8
.

Example 4.6 Recalling B2;n = P2n , one may perform a consistency check as in the
case of the Wiener index (see Example 3.6). Inserting (4.2) into Corollary 4.2, one
obtains after some calculations that W W (B2;n) = n

6 (n +1)(4n2 −1) which coincides

with
(2n+2

4

) = W W (P2n), as it should.

Example 4.7 In the simple example G = Bd;3 as shown in Fig. 3 Corollary 4.4 yields
that ωω(Bd;3) = W W (Bd;3) (since cv(P3) = 0, Qv(P3) = Pv(P3) and Q̃v(P3) =
P̃v(P3)).

5 Wiener and detour indices of the chain graph

In this section we give a formula for the Wiener and detour indices of the chain
graph C(G1, G2, . . . , Gd) in terms of the graphs Gi . Before starting we introduce the
following convenient notation

VL(Gi ) := V (G1) ∪ · · · ∪ V (Gi−2) ∪ (V (Gi−1) \ {vi }) , i = 2, . . . , d

as well as

VR(Gi ) := (V (Gi+1) \ {wi }) ∪ V (Gi+2) ∪ · · · ∪ V (Gd), i = 1, . . . d − 1.

Clearly, VL(Gi ) denotes the set of vertices to the left of Gi and VR(Gi ) denotes the
set of vertices to the right of Gi .

5.1 Wiener index of the chain graph

At first we consider the Wiener index for the chain graph.

Theorem 5.1 The Wiener index of the chain graph G = C(G1, . . . , Gd ; v1, w1, . . . ,

vd , wd) is given by
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W (G) =
d∑

i=1

W (Gi ) +
(

RP (G1) +
d−1∑

s=2

{L P(Gs) + RP (Gs)} + L P (Gd)

)

+1

2

d∑

i=2

⎛

⎝
i∑

j=2

(|V (Gi )| − 1)(|V (G j−1)| − 1)Dv j vi

+
d∑

j=i

(|V (Gi−1)| − 1)(|V (G j )| − 1)Dvi v j

⎞

⎠ .

Proof Similar arguments as in the proof of Theorem 3.1 yield that

2W (G) = 2
d∑

i=1

W (Gi ) +
d∑

i=2

i−1∑

j=1

∑

a ∈ VL (Gi )

∑

b ∈ VR(G j )

Dab

+
d−1∑

i=1

d∑

j=i+1

∑

a ∈ VR(Gi )

∑

b ∈ VL (G j )

Dab.

Recalling Fact 2.2 about the decomposition of the shortest path in a chain graph, we
can thus write

2W (G) = 2
d∑

i=1

W (Gi ) +
d∑

i=2

i−1∑

j=1

∑

a ∈ VL (Gi )

∑

b ∈ VR(G j )

⎛

⎝Davi +
i−1∑

s= j+1

Dvsws + Dbw j

⎞

⎠

+
d−1∑

i=1

d∑

j=i+1

∑

a ∈ VR(Gi )

∑

b ∈ VL (G j )

⎛

⎝Dawi +
j−1∑

s=i+1

Dvsws + Dv j b

⎞

⎠ .

Let us consider first

T1 :=
d∑

i=2

i−1∑

j=1

∑

a ∈ VL (Gi )

∑

b ∈ VR(G j )

(Davi + Dbw j )

+
d−1∑

i=1

d∑

j=i+1

∑

a ∈ VR(Gi )

∑

b ∈ VL (G j )

(Dawi + Dv j b).

This is equal to

d∑

i=1

i−1∑

j=1

(|V (G j )| − 1)Pvi (Gi ) +
d∑

i=1

i−1∑

j=1

(|V (Gi ) − 1)|Pw j (G j )

+
d∑

i=1

d∑

j=i+1

(|V (G j )| − 1)Pwi (Gi ) +
d∑

i=1

d∑

j=i+1

(|V (Gi )| − 1)Pv j (G j ).
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Considering the first and fourth sum yields

d∑

i=1

i−1∑

j=1

(|V (G j )| − 1)Pvi (Gi ) +
d∑

j=1

d∑

i= j+1

(|V (G j )| − 1)Pvi (Gi )

= 2
d∑

i=2

Pvi (Gi )

i−1∑

j=1

(|V (G j )| − 1).

Considering the second and third sum yields in a similar fashion

d∑

i=1

i−1∑

j=1

(|V (Gi )| − 1)Pw j (G j ) +
d−1∑

i=1

d∑

j=i+1

(|V (G j )| − 1)Pwi (Gi )

= 2
d−1∑

i=1

Pvi+1(Gi )

d∑

j=i+1

(|V (G j )| − 1).

Thus, in total we obtain

T1 = 2

⎛

⎝
d∑

i=2

Pvi (Gi )

i−1∑

j=1

(|V (G j )| − 1) +
d−1∑

i=1

Pvi+1(Gi )

d∑

j=i+1

(|V (G j )| − 1)

⎞

⎠ .

Recalling the definition of L P (Gi ) and RP (Gi ), this can be written as

T1 = 2

(
d∑

i=2

L P (Gi ) +
d−1∑

i=1

RP (Gi )

)

= 2

(

RP (G1) +
d−1∑

s=2

{L P (Gs) + RP (Gs)} + L P (Gd)

)

.

Now, let us consider the remaining sums, i.e.,

T2 :=
d∑

i=2

i−1∑

j=1

∑

a ∈ VL (Gi )

∑

b ∈ VR(G j )

i−1∑

s= j+1

Dvsws

+
d−1∑

i=1

d∑

j=i+1

∑

a ∈ VR(Gi )

∑

b ∈ VL (G j )

j−1∑

s=i+1

Dvsws

=
d∑

i=2

i∑

j=2

(|V (Gi )| − 1)(|V (G j−1)| − 1)Dv j vi

+
d∑

i=2

d∑

j=i

(|V (Gi−1)| − 1)(|V (G j )| − 1)Dvi v j ,
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where we have used in the last line that
∑i−1

s= j+1 Dvsws = Dv j+1wi−1 and wi−1 = vi .
It remains to collect the above results. From the definition of T1 and T2 it follows

that

W (G) =
d∑

i=1

W (Gi ) + 1

2
T1 + 1

2
T2

=
d∑

i=1

W (Gi ) +
(

RP (G1) +
d−1∑

s=2

{L P(Gs) + RP (Gs)} + L P (Gd)

)

+1

2

d∑

i=2

⎛

⎝
i∑

j=2

(|V (Gi )| − 1)(|V (G j−1)| − 1)Dv j vi

+
d∑

j=i

(|V (Gi−1)| − 1)(|V (G j )| − 1)Dvi v j

⎞

⎠ ,

as claimed. ��
As a corollary to the above theorem we have the following result.

Corollary 5.2 The Wiener index of the chain graph G = C(H, . . . , H ; v,w, . . . ,

v, w) (d times) is given by

W (G) = dW (H) + (|V (H)| − 1)(Pv(H) + Pw(H))

(
d

2

)

+(|V (H)| − 1)2Dvw

(
d

3

)

.

For large d one has asymptotically

W (G) ∼ (|V (H)| − 1)2Dvw

6
d3.

Proof From Theorem 5.1 we directly obtain

W (G) = dW (H) +
{

d∑

i=2

L P (H) +
d−1∑

i=1

RP (H)

}

+ (V (H) − 1)2

2

d∑

i=2

⎛

⎝
i∑

j=2

Dv j vi +
d∑

j=i

Dvi v j

⎞

⎠ ,

where we have used in the last line that

Dv j vi + Dvi v j =
i−1∑

s= j

Dvsvs+1 = Dvw(i − j).
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Recalling (2.3), we find

RP (H) = Pw(H)(|V (H)| − 1)(d − i), L P (H) = Pv(H)(|V (H)| − 1)(i − 1),

showing that the term in the above bracket equals

d∑

i=2

L P (H) +
d−1∑

i=1

RP (H) = (|V (H)| − 1)

×
(

Pv(H)

d∑

i=2

(i − 1) + Pw(H)

d−1∑

i=1

(d − i)

)

= (|V (H)| − 1)(Pv(H) + Pw(H))

(
d

2

)

.

It follows that

W (G)= dW (H)+(|V (H)| − 1)(Pv(H) + Pw(H))

(
d

2

)

+ (|V (H)| − 1)2Dvw

(
d

3

)

,

as requested. ��

5.2 Detour index of the chain graph

The case of detour index of the chain graph is very similar to the case of Wiener index
of the chain graph; the reason is that the expressions for the shortest and longest path
are very similar (see Fact 2.2), in contrast to the case of the bridge graph (see Fact 2.1).
A minor modification of the proof of Theorem 5.1 (replacing everywhere Dav by �av)
leads to the following result.

Theorem 5.3 The detour index of the chain graph G = C(G1, . . . , Gd ; v1, w1, . . . ,

vd , wd) is given by

ω(G) =
d∑

i=1

ω(Gi ) +
(

RQ(G1) +
d−1∑

i=2

{L Q(Gi ) + RQ(Gi )} + L Q(Gd)

)

+1

2

d∑

i=2

⎛

⎝
i∑

j=2

(|V (Gi )| − 1)(|V (G j−1)| − 1)�v j vi

+
d∑

j=i

(|V (Gi−1)| − 1)(|V (G j )| − 1)�vi v j

⎞

⎠ .

In the same fashion as for the Wiener index we obtain as a corollary to the above
theorem the following result.
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Fig. 5 The spiro-chain of C3
(with d = 5)

Fig. 6 The spiro-chain of
C4(1, 3)

Corollary 5.4 The detour index of the chain graph G = C(H, . . . , H ; v,w, . . . , v, w)

(d times) is given by

ω(G) = dω(H) + (|V (H)|−1)(Qv(H) + Qw(H))

(
d

2

)

+ (|V (H)| − 1)2�vw

(
d

3

)

.

For large d one has asymptotically

ω(G) ∼ (|V (H)| − 1)2�vw

6
d3.

5.3 Examples

In this section we consider three particular examples of spiro-graphs which are also
examples for chain graphs. In particular, we choose examples where Gi = H for all i .
The notation follows closely [5]; we denote the spiro-chain containing the graph Hd
times with Sd(H). Note that the Wiener indices of the examples considered here can
be compared with the results given in [5] (which are based on MAPLE).

Example 5.5 The spiro-chain of the cycle C3 is given in Fig. 5. Since W (C3) =
3, Dvw = 1, Pv(C3) = Pw(C3) = 2, application of Corollary 5.2 yields for the
Wiener index that

W (Sd(C3)) = 3d + 2 · 4 · d(d − 1)

2
+ 4 · 1 · d(d − 1)(d − 2)

2 · 3
= d

3
(2d2 + 6d + 1),

as given in [5]. Similarly, using ω(C3) = 6,�vw = 2, Qv(C3) = Qw(C3) = 4,
application of Corollary 5.4 yields for the detour index

ω(Sd(C3)) = 6d + 2 · 8 · d(d−1)

2
+ 4 · 2 · d(d − 1)(d − 2)

2 · 3
= d

3
(4d2 − 4d + 18).

Example 5.6 The spiro-chain of the square C4(1, 3) is given in Fig. 6. Since
W (C4(1, 3)) = 8, Pv(C4(1, 3)) = Pw(C4(1, 3)) = 4, Dvw = 2, application of Cor-
ollary 5.2 yields for the Wiener index that

W (Sd(C4(1, 3))) = 8d + 12d(d − 1) + 3d(d − 1)(d − 2) = d(3d2 + 3d + 2),
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Fig. 7 The spiro-chain of
C6(1, 4) (with d = 4)

as given in [5]. Similarly, using ω(C4(1, 3)) = 16,�vw = 2, Qv(C4(1, 3)) =
Qw(C4(1, 3)) = 8, application of Corollary 5.4 yields for the detour index

ω(Sd(C4(1, 3))) = 16d + 24d(d − 1) + 3d(d − 1)(d − 2) = d(3d2 + 15d − 2).

Example 5.7 The spiro-chain of the square C6(1, 4) is given in Fig. 7. Since
W (C6(1, 4)) = 27, Pv(C6(1, 4)) = Pw(C6(1, 4)) = 9, Dvw = 3, application of
Corollary 5.2 yields for the Wiener index that

W (Sd(C6(1, 4))) = d

2
(25d2 + 15d + 14),

as given in [5]. Similarly, using ω(C6(1, 4)) = 63,�vw = 3, Qv(C6(1, 4)) =
Qw(C6(1, 4)) = 21, application of Corollary 5.4 yields for the detour index

ω(Sd(C6(1, 4))) = d

2
(25d2 + 135d − 34).

In the next examples we show how to generalize the last example to the spiro-chain
where the vertices v and w are not “opposite”. In contrast to the above examples
these examples will not be pursued further in later sections, although it would be
straightforward to do so.

Example 5.8 In the last example we have treated the spiro-chain of the square C6(1, 4).
It is clear that given a fixed numbering of the underlying graph C6 the vertices v and
w can be arbitrary (but different) numbers between 1 and 6. Choosing the number-
ing such that vertex v has number 1, the number i of the vertex w has to be in
{2, 3, 4, 5, 6}. However, due to the symmetry k ↔ 6 − k + 2 one can restrict i to
{2, 3, 4}. Thus, denoting the graph where the vertices v and w have numbers k and
l by C6(k, l), we can restrict to the cases C6(1, i) with i ∈ {2, 3, 4}. To calculate
the Wiener index we note that the only difference to above is that now Dvw = i − 1
(and also W (C6(1, i)) = 27, Pv(C6(1, i)) = Pw(C6(1, i)) = 9). Thus, application of
Corollary 5.2 yields for the Wiener index that

W (Sd(C6(1, i))) = d

6

{
25(i − 1)d2 + (270 − 75(i − 1))d + 50i − 158

}
.

Choosing i = 4 yields the formula given above, whereas W (Sd(C6(1, 2))) = d
6 (25d2

+195d −58) as well as W (Sd(C6(1, 2))) = d
3 (25d2 +60d −4), as given in [5]. Simi-

larly, using �vw = 7−i (and also ω(C6(1, i)) = 63, Qv(C6(1, i)) = Qw(C6(1, i)) =
21), application of Corollary 5.4 yields for the detour index
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ω(Sd(C6(1, i))) = d

6

{
25(7 − i)d2 + (630 − 75(7 − i))d + 98 − 50i

}
.

Example 5.9 In a similar fashion one can consider the case of CN with arbitrary
N . We only consider the case where N is even, i.e., N = 2k. Then we can con-
sider the family C2k(1, i) with i ∈ {2, 3, . . . , k + 1}. Using Dvw = i − 1 (and
also W (C2k(1, i)) = k3, Pv(C2k(1, i)) = Pw(C2k(1, i)) = k2) application of Corol-
lary 5.2 yields for the Wiener index that

W (Sd(C2k(1, i)))=d

6

{

(2k − 1)2(i − 1)d2 + (2k − 1)
[
6k2 − 3(2k − 1)(i − 1)

]
d

+2(2k − 1)2(i − 1) − 6k2(k − 1)

}

.

6 Hyper-Wiener and hyper-detour indices of the chain graph

In this section we give a formula for the hyper-Wiener and hyper-detour indices of the
chain graph C(G1, G2, . . . , Gd) in terms of the graphs Gi .

6.1 Hyper-Wiener index of the chain graph

At first we consider the hyper-Wiener index of the chain graph.

Theorem 6.1 The hyper-Wiener index of the chain graph G = C(G1, . . . , Gd ;
v1, w1, . . . , vd , wd) is given by

W W (G) =
d∑

i=1

W W (Gi ) +
(

R̃P (G1) +
d−1∑

s=2

{L̃ P (Gs) + R̃P (Gs)} + L̃ P (Gd)

)

+
∑

1≤ j<i≤d

(|V (Gi )| − 1)(|V (G j )| − 1)

(
Dv j+1vi + 1

2

)

+
∑

1≤ j<i≤d

(|V (Gi )| − 1)Pw j (G j )Dv j+1vi

+
∑

1≤ j<i≤d

(|V (G j )| − 1)Pvi (Gi )Dv j+1vi

+
∑

1≤ j<i≤d

Pvi (Gi )Pw j (G j ).

Proof Using similar arguments as in the proof of Theorem 5.1, we obtain that

W W (G) =
d∑

i=1

W W (Gi ) +
∑

1≤ j<i≤d

∑

a ∈ VL (Gi )

∑

b ∈ VR(G j )

(
Dab + 1

2

)

.
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Recalling Fact 2.2 about the decomposition of the shortest path in a chain graph, we can
thus writeDab = Davi +∑i−1

s= j+1 Dvsws + Dbw j . Using the fact that
∑i−1

s= j+1 Dvsws =
Dv j+1wi−1 and wi−1 = vi , we get that

W W (G) =
d∑

i=1

W W (Gi )

+
∑

1≤ j<i≤d

∑

a ∈ VL (Gi )

∑

b ∈ VR(G j )

(
Davi + Dv j+1vi + Dbw j + 1

2

)

.

Therefore, by (4.1) we have that

W W (G) =
d∑

i=1

W W (Gi ) +
d∑

i=2

P̃vi (Gi )

i−1∑

j=1

(|V (G j )| − 1)

+
d−1∑

j=1

P̃w j (G j )

d∑

i= j+1

(|V (Gi )| − 1)

+
∑

1≤ j<i≤d

(|V (Gi )| − 1)(|V (G j )| − 1)

(
Dv j+1vi + 1

2

)

+
∑

1≤ j<i≤d

(|V (Gi )| − 1)Pw j (G j )Dv j+1vi

+
∑

1≤ j<i≤d

(|V (G j )| − 1)Pvi (Gi )Dv j+1vi

+
∑

1≤ j<i≤d

Pvi (Gi )Pw j (G j ).

Recalling the definition of L̃ P (Gi ) and R̃P (Gi ), this is equivalent to our claim. ��

Using Theorem 6.1, a similar proof to Corollary 5.4 yields that

Corollary 6.2 The hyper-Wiener index of the chain graph G = C(H, . . . , H ;
v,w, . . . , v, w) (d times) is given by

W W (G) = dW W (H) + (|V (H)| − 1)(P̃v(H) + P̃w(H))

(
d

2

)

+(|V (H)| − 1)2
(

d

3

)(
Dvw(d − 1) + 2

4

)

Dvw

+(|(V (H)| − 1)(Pv(H) + Pw(H))Dvw

(
d

3

)

+ Pv(H)Pw(H)

(
d

2

)

.

123



J Math Chem (2010) 47:72–98 95

For large d one has asymptotically

W W (G) ∼ (|V (H)| − 1)2D2
vw

24
d4.

6.2 Hyper-detour index of the chain graph

The case of hyper-detour index of the chain graph is very similar to the case of the
hyper-Wiener index of the chain graph. A minor modification of the proof of Theo-
rem 6.1 yields the following result.

Theorem 6.3 The hyper-detour index of the chain graph G = C(G1, . . . , Gd ;
v1, w1, . . . , vd , wd) is given by

ωω(G) =
d∑

i=1

ωω(Gi ) +
(

R̃Q(G1) +
d−1∑

s=2

{L̃ Q(Gs) + R̃P (Gs)} + L̃ Q(Gd)

)

+
∑

1≤ j<i≤d

(|V (Gi )| − 1)(|V (G j )| − 1)

(
�v j+1vi + 1

2

)

+
∑

1≤ j<i≤d

(|V (Gi )| − 1)Qw j (G j )�v j+1vi

+
∑

1≤ j<i≤d

(|V (G j )| − 1)Qvi (Gi )�v j+1vi

+
∑

1≤ j<i≤d

Qvi (Gi )Qw j (G j ).

Using Theorem 6.3, a similar proof to Corollary 5.4 yields that

Corollary 6.4 The hyper-detour index of the chain graph G = C(H, . . . , H ;
v,w, . . . , v, w) (d times) is given by

ωω(G) = dωω(H) + (|V (H)| − 1)(Q̃v(H) + Q̃w(H))

(
d

2

)

+(|V (H)| − 1)2
(

d

3

) (
�vw(d − 1) + 2

4

)

�vw

+(|V (H)| − 1)(Qv(H) + Qw(H))�vw

(
d

3

)

+ Qv(H)Qw(H)

(
d

2

)

.

For large d one has asymptotically

ωω(G) ∼ (|V (H)| − 1)2�2
vw

24
d4.
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6.3 Examples

In this section we continue the study of the spiro-graphs introduced in Sect. 5.3 and
compute their hyper-Wiener and hyper-detour indices. Note that the hyper-Wiener
indices of the examples considered here can be compared with the results given in [5]
(which are based on MAPLE).

Example 6.5 The spiro-chain of the cycle C3 is given in Fig. 5. Since W W (C3) =
3, Dvw = 1, P̃v(C3) = P̃w(C3) = 2, Pv(C3) = Pw(C3) = 2, application of Corol-
lary 6.2 yields for the hyper-Wiener index that

W W (Sd(C3)) = d2

6
(d2 + 6d + 11),

as given in [5]. Similarly, using ωω(C3) = 9,�vw = 2, Q̃v(C3) = Q̃w(C3) =
6, Qv(C3) = Qw(C3) = 4, application of Corollary 6.4 yields for the hyper-detour
index

ωω(Sd(C3)) = d

3
(2d3 + 10d2 + 27d − 12).

Example 6.6 The spiro-chain of the square C4(1, 3) is given in Fig. 6. Since W W (C4
(1, 3)) = 10, P̃v(C4(1, 3)) = P̃w(C4(1, 3)) = 5, Pv(C4(1, 3)) = Pw(C4(1, 3)) =
4, Dvw = 2, application of Corollary 6.2 yields for the hyper-Wiener index that

W W (Sd(C4(1, 3))) = d

2
(3d3 + 7d2 + 4d + 6),

as given in [5]. Similarly, using ωω(C4(1, 3)) = 30,�vw = 2, Q̃v(C4(1, 3)) =
Q̃w(C4(1, 3)) = 15, Qv(C4(1, 3)) = Qw(C4(1, 3)) = 8, application of Corollary 6.4
yields for the hyper-detour index

ωω(Sd(C4(1, 3))) = d

2
(3d3 + 23d2 + 64d − 30).

Example 6.7 The spiro-chain of C6(1, 4) is given in Fig. 7. Since W W (C6(1, 4)) =
42, P̃v(C6(1, 4)) = P̃w(C6(1, 4)) = 14, Pv(C6(1, 4)) = Pw(C6(1, 4)) = 9, Dvw =
3, application of Corollary 6.2 yields for the hyper-Wiener index that

W W (Sd(C6(1, 4))) = d

8
(75d3 + 110d2 + 29d + 122),

as given in [5]. Similarly, using ωω(C6(1, 4)) = 1278,�vw = 3, Q̃v(C6(1, 4)) =
Q̃w(C6(1, 4)) = 426, Qv(C6(1, 4)) = Qw(C6(1, 4)) = 21, application of Corol-
lary 6.4 yields for the hyper-detour index

ωω(Sd(C6(1, 4))) = d

8
(75d3 + 590d2 + 16509d − 6950).
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Let us collect the results about the examples in the following table.

Index Sd (C3) Sd (C4(1, 3)) Sd (C6(1, 4))

Wiener d
3 (2d2 + 6d + 1) d(3d2 + 3d + 2) d

2 (25d2 + 15d + 14)

Detour d
3 (4d2 − 4d + 18) d(3d2 + 15d − 2) d

2 (25d2 + 135d − 34)

Hyper-Wiener d2

6 (d2 + 6d + 11) d
2 (3d3 + 7d2 + 4d + 6) d

8 (75d3 + 110d2 + 29d + 122)

Hyper-detour d
3 (2d3 + 10d2 d

2 (3d3 + 23d2 d
8 (75d3 + 590d2

+ 27d − 12) + 64d − 30) + 16509d − 6950)

7 Conclusion

In this paper we have derived the Wiener, hyper-Wiener, detour and hyper-detour indi-
ces of bridge and chain graphs. The important special case where the bridge and chain
graphs are built from several copies of the same graph (and connected in the same
fashion, i.e., via the same vertices) was singled out and the asymptotics of the above
indices for large graphs were given in this case. Furthermore, some explicit examples
were treated in detail, in particular some spiro-graphs as examples of chain graphs
built from copies of the same graph H connected via the same vertices. However, as
the general formulas show it is quite cumbersome to determine the above indices for
arbitrary chain graphs and this is true already for the case where the graph H is the
same, but the connecting vertices are different ones. Clearly, the indices considered in
the present paper are among the best known ones but there do exist many other differ-
ent topological indices which have been considered in the (mathematical or chemical)
literature. The consideration of some of the other indices for bridge and chain graphs
is left to future investigations. As mentioned in the introduction, the Wiener index
was determined in [2] for a class of graphs containing in particular the bridge and
chain graphs. This suggests a common generalization of the results derived in [2] and
the present article, namely to determine the hyper-Wiener, detour and hyper-detour
indices for the class of graphs considered in [2].
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